Warning: this version has been completed with Google Translate , it certainly contains errors or inaccuracies.

Technical sheet - general: Goshenite

Gemma - names	(Italian - Gosenite (English - Goshenite (French - Ghoshénite (Spanish - Goshenitc (Portuguese - Ghoshen (Thai - โก เซ ใน ตั kocher	e) (G) (Ara e) a) (Ma ite) (Ma nit') (S	erman - Ghoschenit) bic - егтап - Ghushinit) (Russian - Гошенит Goshenit) andarin -蓝晶 lán jī ng) wahili - Ghoshenite)	6	photo		
Colors (GIA)	(Hindi - गोशेनाइट goshenait) Colorless, almost colorless or white (translucent). It is a pure beryl containing alkali.						
Cause of Color	Virtually free of chromatophore agents.						
Classification	Mineral class Cyclosilicates	Spe	Cies - Group (mineral) Beryls - /		Variety		
Optical properties	Specific Gravity: 2.68-2.90 Municipality: 2.80	RI: 1, Polar Double ref 0.013 cc	562 to 1,615 iscope : DR iraction: - 0.003- (0.005-0.009 pmmon)	Charac optic Negat uniaxi	Character opticalPleochroism AbsentNegative uniaxialAbsent		
	Luster (luster) Vit	- luster of t treo - Vietre	he fracture	Dispersion (fire)			
Light	Fluorescence SWUV (254 nm) : Inert LWUV (365nm) : inert			Phosphorescence NO			
Form	Crystalline dr Prismatic Melting point: 250	dress Phenomenal optical Crystallin c effects Hexa 2500 ° C NO Crystallin		Crystalline s Hexagor Crystal c	ystem nal I ass		
Chemical formula	Aluminum silicate and beryllium			Spectrometer image			
	with trace eleme	with trace elements such as Cr, V, Fe, Mn, etc.			Non-indicative spectrum		
Fracture	Flaking Poor-imperfect cle along the basal	eavage plane	Breaking- Par Rare- basal	Breaking- Parting Rare- basal		e Ial	
Durability	Hardness (Mohs) 7.5-8; 150 - 20	- Absolute 00	Toughness Buana to fragile		Stability (heat, lig Good-sta	ht, chemicals) ble	
Clarity - characteristics	Typical inclusions: Typically a transparent gem; most of the specimens that appear clean on visual examination, with no visible inclusions. There are cloudy or even opaque crystals, but these varieties are not used in jewelry. Typical inclusions of beryls such as fuchsite, rutile and other minerals are visible only in the raw crystals.						
	Type I. Typically free of in	clusions	Transparency (commercial) - transparency Transparent to translucent				
Deposits - types of rocks	It is often found in granite pegmatites and alluvial gravel deposits. Geological age : 35+ million years ago						
Characteristics of rough stones	It forms prismatic or vertically striated crystals, sometimes ending in small pyramidal facets with shapes that tend to be hexagonal, with a flat or pointed top like a prism						

Main deposits	Afghanistan , Badakhshan , Kunar , Nangarhar , Austria , Brazil , Bahia, Minas Gerais, Paraíba, Rio Grande do Norte , Canada , British Columbia, Yukon, China , Sichuan, Xinjiang, Yunnan, Colombia , India , Tamil Nadu , Kazakhstan, Karaganda Region , Mexico , Madagascar , Amoron'i , Sava, Vakinankaratra , Myanmar , Mandalay Region, Pyin-Oo-Lwin District , Shan State, Namibia , Erongo Region , Nepa, Nigeria , Kaduna, Nasarawa , Plateau, Pakistan , Gilgit- Baltistan , Goshawk District, Khyber Province Pakhtunkhwa , Russia , Sverdlovsk Oblast , Zabaykalsky Region, Nerchinsky District , Sri Lanka , Sabaragamuwa Province , Tajikistan , Gorno- Badakhshan , Ukraine , Zhytomyr Oblast, USA , California, Colorado, Maine, New Hampshire, North Carolina, Utah, Vietnam , Yên Province Bai , Zambia , Eastern Province, Zimbabwe , East Mashonaland , Mashona and West.				
discovery	of Goshen , Massachusetts (USA), where it was first found, in 1844.				
History	The ancient Greeks used the refractive property of beryl to make primordial shapes of glasses . At the time of Nero, this mineral was found on the Island of Elba the White Beryl (or Gosenite) , which was then cut to be used as a lens. Since the 1st century AD, the excellent qualities of this clear beryl have made it the perfect alternative to other colorless gemstones, such as diamonds. When polished and faceted, it creates a fantastic and classy gem that sits elegantly in white gold. Since other beryls received their color from internal impurities, early gemologists assumed that the gem must be pure; however, goshenite was later found to be unique in that it had other chemical impurities that suppressed its color. When it is free of inclusions, it is truly one of the most beautiful gemstones on the planet and rightly deserves the nickname "mother of precious stones". Some also think that this nickname refers to the fact that it is able to transform into a variety of different beryls with the addition of different impurities. Name : The name of this gem comes from Goshen , Massachusetts which was one of the first areas to discover the gem. $\vec{q} \models \vec{q} \mid \vec{g} \le \vec{q} \mid \vec{g} \mid diravai \mid d urya was probably the name of goshenite in Sanskrit. In its many other occurrences in literature, In more recent texts, its translation was dvandva .Other trade names: white beryl, colorless beryl.Variety : /$				
Property attributed	Because of its seemingly pure appearance, Goshenite (or White Beryl as it is sometimes called) has been called the "mother of precious stones ". It is also said to be the purest of all gemstones and in several countries the gem is extremely popular in marital ceremonies. In ancient Greece, the Greeks used it to make the first ever glasses, as its crystalline transparency was perfect for lenses. Perhaps this is why it is believed that this gem can help improve eyesight. It is believed that it fights fatigue by empowering those who feel exhausted. It can help to free the mind, bring truth and clarity to the psyche, intensify cognitive abilities, confer ease of concentration, removing unnecessary and harmful distractions, protecting from stress. Under the esoteric aspect, however, it is considered the precious stone that preserves memory: it would therefore have the power to make people remember previous lives and, at the same time, to make people forget negative events and injustices received, thus opening the way to forgiveness. It is a stone considered a source of light and spirituality. Metaphysical beliefs hold that it also promotes self-control, creativity and originality. Planet: Moon Month: NA Zodiac signs : Taurus, Scorpio or Gemini				
Treatments	Goshenite is generally not enhanced in any way, however there are systems to alter its appearance (although not commonly used). Goshenite can be colored yellow, green, pink, blue and in intermediate colors by irradiating it with high-energy particles . The resulting color depends on the content of the impurities Ca, Sc, Ti, V, Fe and Co. When heated up to 400 ° C , the yellow beryl (heliodor) crystals usually turned colorless . Some goshenites can be modified through the use of silver and other colored foil coatings in the back of the gem or through the application of a thin colored overlay foil (both very infrequent).				

Synthetic counterpart	There is a synthetic counterpart for goshenite, as well as for all other beryls, however it is not commercially available, due to its relatively high production cost compared to a					
	generally low price of natural stone.					
It can be	Rather than being imitated, gos	henite tends to imitate othe	r colorless gems, in particular,			
confused with	although not frequently, the di	amond Given the low disc	persion, corresponding to an			
comosed with	almost impercentible "fire" inclu	isions bardness and other fo	ictors, it is difficult for this benul			
	to pass through a good imitation of the diamond. Coloriess gems in general are not very					
	common (apart from diamonds and their imitations, especially synthetic ones) on the					
	market.					
	Topaz (separation by: RI, SG, inclusions), glass (separation by: optical character),					
	synthetic spinel (separation by: hardness, optical character, RLSG), auartz and synthetic					
	quartz (separation by: optical figure RI) blue zircon (separation by: SG RI					
	birging and Cr (songration by B) C birging and dispersion)					
In alta articea						
indicative	Different tests reveal the different characteristics between aquamarine and					
gemological tests	potential simulants, so all possible types of anal must be taken into consideration:					
	visual aspect, microscope examination, polariscope, dichroscope,					
	refractometer chelsed filter IIV light etc.					
)/						
value (2021)	Hign : 100 + \$ / cf	Meaium: 50-80 \$ / cf	LOW: \$ 10 / cf			
	3 carat +	1-3 carats	below the carat			
Typical cut	Just like any other beryl, goshenite can also be cut into any popular gem shape. It is					
	commonly faceted in brilliant cuts to emphasize its luminous performance and to give it					
	depth, as well as to propose it as an imitation of the diamond. A well-cut aoshenite can					
	appear bright with good light output. Sometimes it is worked in cabochon both to					
	highlight its brightness and transparency. But also for a milly appearance					
Forma e un alla se a s	The man and a set is she had a family a family of a set of a minky appearance.					
ramous stones	inere are no particularly tamous stones for this gem.					
Record stones	The largest known goshenite weighs 1.3 kg and belongs to Wing Kiat Cheong					
	(Singapore) and was registered for the Guinness Book of Records, Singapore on March					
	13, 2018.					